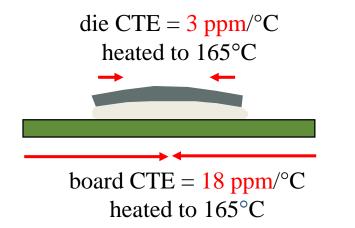
The Dynamics of Low Stress Epoxy Curing


Robert L. Hubbard, Lambda Technologies 541-485-7215 bhubbard@microcure.com Iftikhar Ahmad, Lambda Technologies David R. Tyler, University of Oregon

Thermal and Chemical Stress in Joints

- Thermal stress is created by temperature excursions during assembly and product life
 - Joining materials with different CTEs can cause stress failures
 - Silicon and glass differ widely from organics and metals
- Chemical shrinkage stress is created during the cure of an epoxy (or any thermoset resin)
 - <u>Temperature of cure</u> and <u>extent of cure</u> directly affects chemical stress
 - The <u>chemical structures</u> of the starting materials affect chemical stress (and all the thermomechanical properties of an epoxy)
 - 1. Once the extent of cure is complete, the stress properties do not change
 - Incompletely cured epoxy properties can change with <u>higher</u> temperature (extent of cure changes)

Compression Stress From "CTE-Mismatch"

• Co-efficient of thermal expansion mis-match between materials

165°C cure temp = 2100 ppm difference

100°C cure temp = 1125 ppm difference

Die Underfill

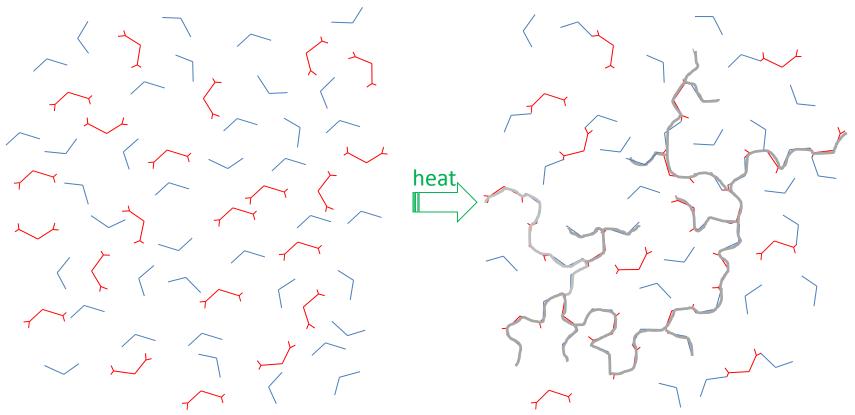
Fig. 5: A failed part of the control cell after 1000 cycles. Courtesy: IBM

- Lower the cure temperature
 - Lower stress from CTE mis-match
 - Cure time increases rapidly
 - Cure temp lower limit is Tg

Epoxy Shrinkage Stress During Cure

- Cure temperature <u>directly</u> affects total shrinkage stress
 - Shrinkage begins at gelation point
 - Temperature difference between gelation and room temperature

• Great! Let's all use lower cure temperatures!


Adhesion Depends on Extent of Cure

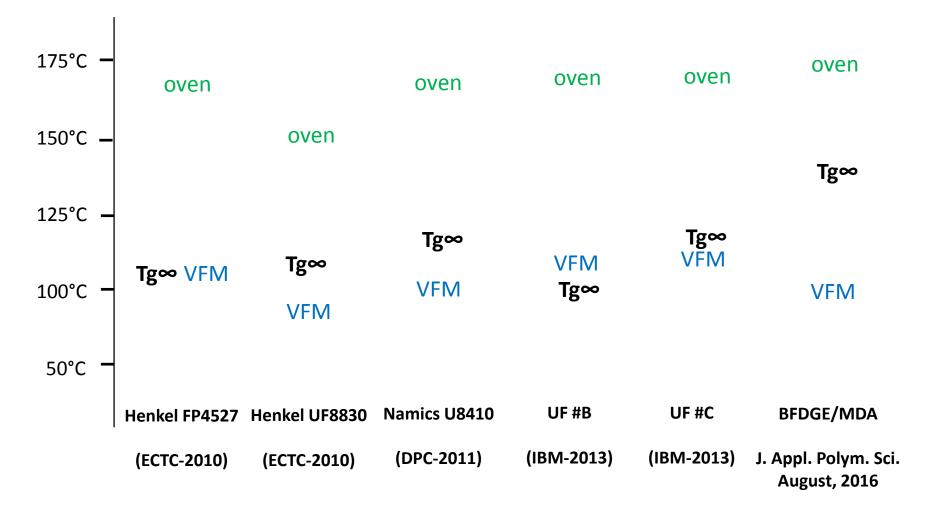
• Resin (epoxide) and hardener (amine example):

- Each reaction creates a strong source of adhesion to surfaces
- Networks are formed from linear and crosslinked connections
 - More connections = greater adhesion
 - More connections = higher Tg (extent of cure)
- Increasing network density reaches the <u>critical point of gelation</u>
 - viscosity rises rapidly; mobility and reaction rate drops rapidly
 - As the cure Tg increases, the cure temperature must be increased

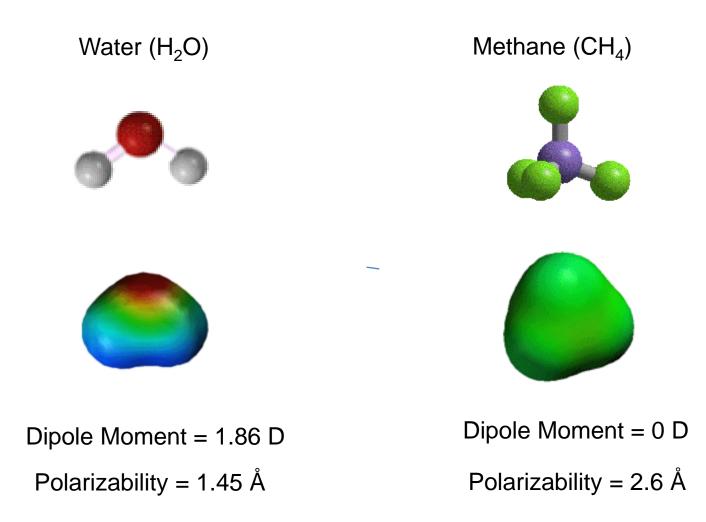
Fluid Resin to Rigid Gel

• A molecular backbone spanning the whole system defines "gelation".

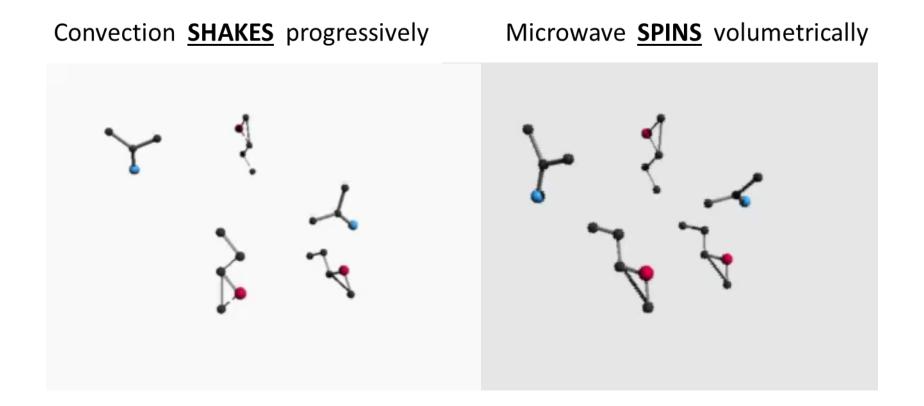
- Backbone is now <u>rigid</u> so continued cure requires increasing temperatures.
- Cure temperatures are usually set 20-50°C above Tg∞ for <u>full cure</u>.


Problems with Incomplete Cure Reactions

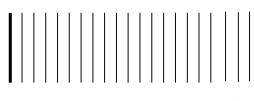
- At the gel point the cure reaction may be only 30-50% complete
 - As the temperature is raised the reaction (and adhesion) can continue
 - If temperature is not kept 10-15°C above Tg, a glass (solid) forms
 - Time at a lower temperature must increase by 1000X
- Film adhesives are incompletely cured glasses (on purpose)
- 1. Adhesion will not increase without higher temperature
- 2. The incompletly cured joint will soften at low temperatures
- 3. If the joint temperature is raised above Tg at a later process step: The cure reaction will continue with:
 - Increased epoxy shrinkage
 - Decreased coefficient of thermal expansion
 - Potential movement and shifting of parts
 - Creation of voids and cracking in adhesive and between parts


Back to high temperature curing, and high total stress

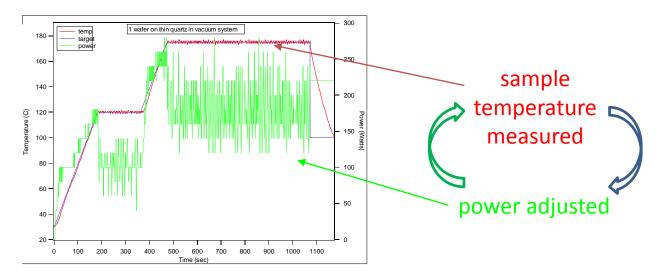
Low Temperature Cures with Microwaves


• Full cure measured as Tg ∞ from DMA and Δ H from DSC (no glass formed)

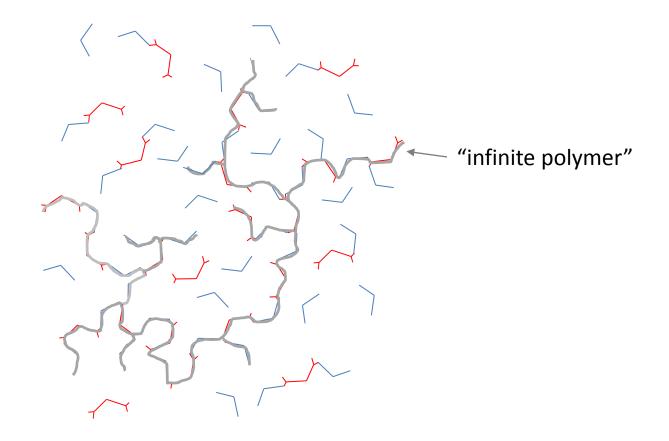
Microwaves Create Molecular Rotation


Microwaves Increase Polymer Mobility

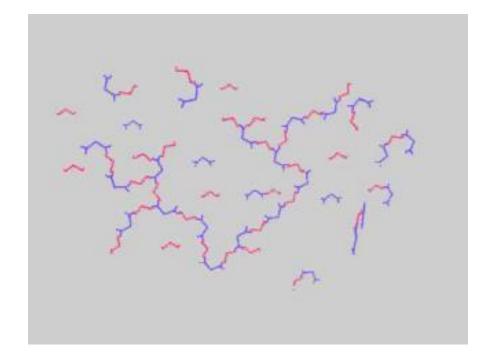
• Molecules are spinning; cure reactions continue; adhesion increases


Variable Frequency Microwaves (ORNL 1992)

- Multiple scanned frequencies
 - 4096 frequencies, each 260 Hz wide, for only $25 \mu s$ each

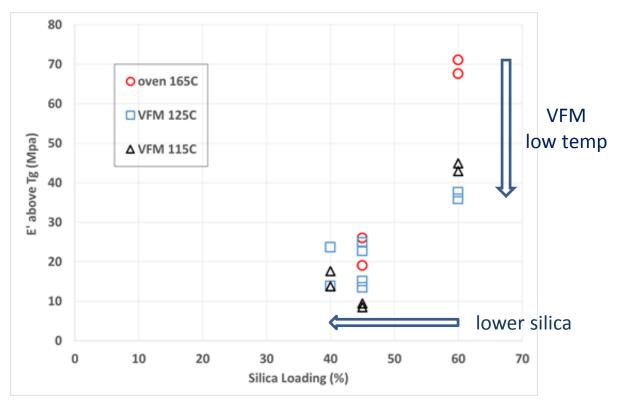


C-band: 5.85-7.0 GHz


- Large, highly <u>uniform field</u> and <u>no metal arcing</u>
- Digital closed-feedback loop for flexible energy control

Low Temp? Back to the Rigid Gel Network

Mobility of Backbone with Microwave Rotation


• <u>Gel state mobility</u> allows the cure reaction to continue at low temperature

Low Temperature VFM Cure = Low Stress

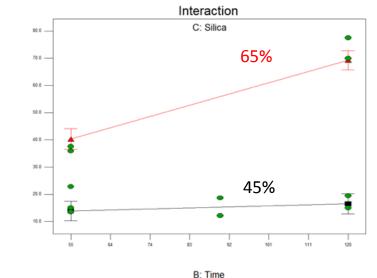
- Low temperature cure of epoxies (~50°C lower than oven)
 - Full extent of cure, full adhesion, and maximum Tg∞
 - Cure well below Tg∞ temperature without forming a glass
 - Similar cure times or faster
- Lower warpage FC-UF and higher package reliability (IBM 2013)
 - <u>Lowered thermal stress</u> between CTE mis-matched materials (i.e. silicon/BT)
 - <u>Lowered shrinkage stress</u> in the epoxy joint
 - Lowered modulus and crosslink density (!)
- Lower warpage package-on-package assembly (TSMC US 8,846,448)
 - Found void removal improved (as did IBM 2015)
- How does this affect UF formulations?
 - What about the silica added to lower CTE (increase modulus)?
 - What about the elastomers added to lower modulus?
- What about encapsulants, molding epoxies, and structural parts?

Effects of Silica Loading?

- Namics U8410 underfill
 - With 60%, 45%, and 40% silica filler loading
 - Storage modulus (E') measured by DMA at 50°C above Tg (tan δ)

- Lowered silica loading reduced modulus (as expected)
- Low temperature VFM cure also lowered modulus

More Details from DOE


• 21 trials with replications and center points

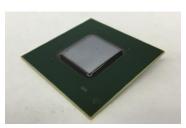
Variable	Low setting	High setting
Soak temperature	115 °C	125 °C
Cure time at soak	55 min	120 min
Silica loading	45%	60%

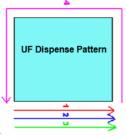
- Large effect of silica loading %
 - Silica used to be added for high modulus
 - Now it is added to reduce CTE
- Cure time only matters for 65% loading
 - Lower heat capacity for silica than epoxy?
- No effect of temperature dropping modulus seems to plateau

Modulus

• Very low modulus (15 MPa vs. 70 MPa)

Elastomer Additive Has No Effect on Modulus

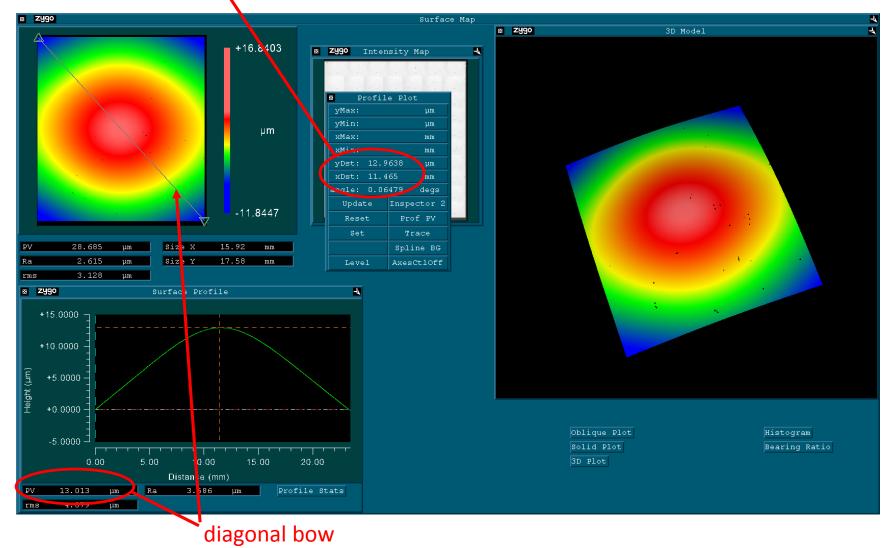

• For the 60% silica loaded underfill:


	Elastomer	Cure (°C)	Time	E′ (>Tg∞)
Oven cure	Y	165 °C	120 min	71 MPa
VFM cure	Y	115 °C	55 min	40 MPa
VFM cure	Ν	115 °C	55 min	35 MPa

- Once again, there is no benefit to adding elastomer
- Issues with the under-filling process are relieved with:
 - Lower levels of silica loading faster under-fill dispense
 - Elastomer additives no longer needed

Does Lower Stress Produce Lower Warpage/Bow?

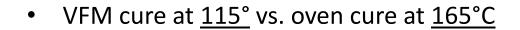
- Materials:
 - U8410-268 with lowered silica loadings and removal of elastomer additive
 - 17mm x 17mm dice on 40mm x 40mm substrate with 1,444 I/O
- Methods:
 - Manual UF dispense with constant air pressure on 100°C hotplate

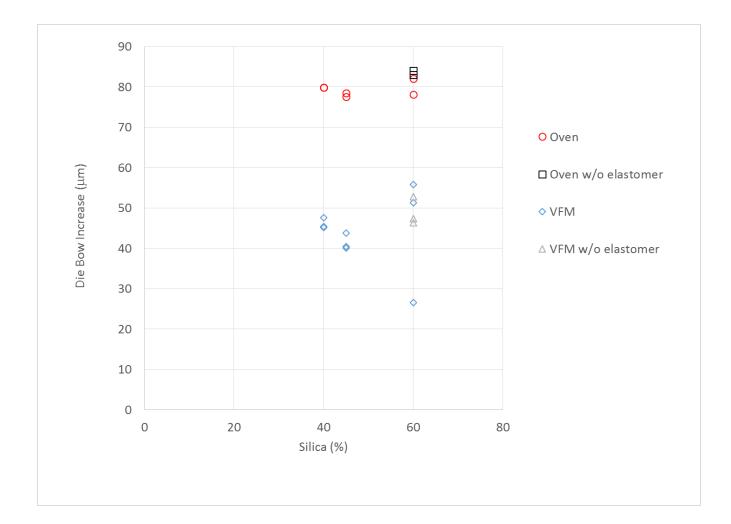


- Warpage and bow (3D) measured by optical interferometry (+/- 0.1 μ m)
- Curing by ThermoScientific convection oven and Lambda Microcure 2100
- VFM samples cured at 115°C for 55 minutes with 0.2 deg/s ramp rate
- Oven samples cured at 165°C for 60 minutes (standard POR)
- Extent of oven and VFM cure processes established in SMTAI paper above
 - <u>Equivalent Tg</u> (115°) cure to standard oven POR samples

Measurement of Die Bow

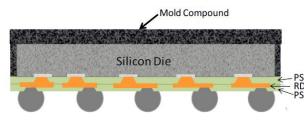
X- and Y- warpage




Bow Data Before and After UF

• Three samples each for VFM cure; two samples each for oven cure

	bow PreUF	silica (%)	elastomer	bow UF	Difference	Ave Diff]
1	. 13.0	60	Y	64.368	51.4	45.26	
2	13.3	60	Y	69.117	55.8		
3	12.8	60	Y	39.363	26.6		
4	13.1	60	Ν	65.92	52.8		
5	12.9	60	Ν	60.289	47.4		
6	12.8	60	Ν	59.169	46.4		VFM
7	13.3	45	Y	57.161	43.9		
8	12.5	45	Y	52.646	40.1		
9	12.9	45	Y	53.324	40.4		
10	12.0	40	Y	59.644	47.6		
11	. 12.5	40	Y	57.688	45.2		
12	. 12.7	40	Y	58.117	45.5		
13	12.8	60	Y	90.969	78.1	80.40	
14	13.0	60	Y	95.091	82.1		
15	13.2	60	Ν	97.295	84.0		
16	11.7	60	Ν	94.697	83.0		oven
17	13.4	45	Y	90.977	77.6		
18	12.3	45	Y	90.771	78.5		
19	12.2	40	Y	92.146	79.9		
20	12.0	40	Y	91.928	79.9		
ave =	12.7					44%	lower bow with VFM


Temperature is Primary Effect on Bow

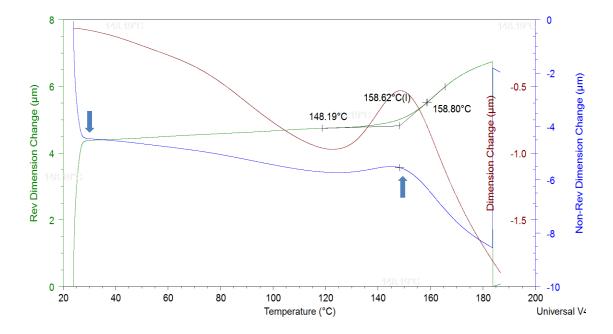
Fan-out Wafer Level Packaging

- Epoxies are molded around silicon dice face down on adhesive tape
- Epoxy thickness and much of the wafer is ground back to leave thin wafer
- Dielectric and metal layer(s) are used to connect dice and to fan-out pads

STATS ChipPAC eWLCS

- There are typically two steps in epoxy molding; mold and post-mold cure
 - The mold process is lower temperature for just a few minutes (glass)
 - The PMC is higher temperature for an hour or more
 - How are the molding and PMC adding stress in a large wafer or panel shape?

Epoxy Wafer PMC Experiments

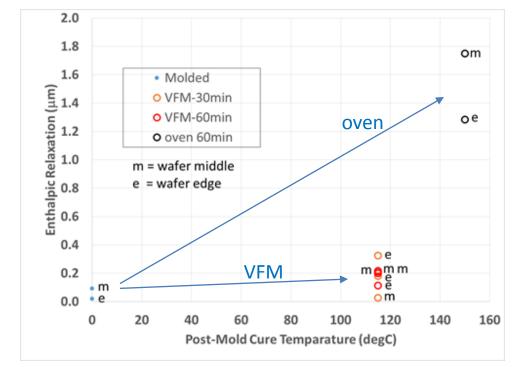

- 300 mm epoxy wafers (Applied Materials) molded at 125°C for 8 minutes
- Results from both 150°C oven PMC and 115°C VFM PMC:
 - Wafer warpage measured clockwise around a wafer on an optical bench

Location	Wafer 1	Wafer 1	Wafer 2	Wafer 2
Clock Dial	Before Cure	After 115C; 30 min VFM Cure	Before Cure	After 115C; 60 min VFM Cure
O'clock	Lift in mm	Lift in mm	Lift in mm	Lift in mm
12	3	2	0	0
1.5	1	0	3	2
3	1	4	3	2
4.5	4	1	0	0
6	0	3	4	4
7.5	4	3	2	1
9	5	0	2	1
10.5	1	3	3	3
Total	19	16	17	13

- This mold cure produced nearly full cure (based on Tg∞ values)
- PMC with VFM still seemed to <u>reduce</u> warpage in the wafer by >3 mm.

Shrinkage Stress Measured by modulated-TMA

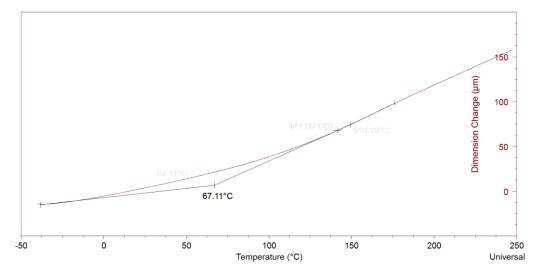
- Samples from the molded and PMC epoxy wafers taken at the <u>middle</u> and <u>edges</u>
- The non-reversible enthalpy of relaxation shrinkage (blue)



- One-time final increase in shrinkage of the polymer network
- Most thermosets display this shrinkage on heating after cure

Oven vs. VFM Shrinkage Stress from PMC

۲


Lower temperature PMC (with VFM) reduces final heat shrinkage

- Lower temperature <u>oven</u> PMC would create uncured glass
- These wafers were oven molded. Would VFM molding reduce wafer warpage even more? This is under study.

Low Temperature Curing without VFM?

- An example of low temperature supplier cure profiles:
 - Standard: 110°C for 90 seconds
 - Alternate: 80°C for 5 minutes
 - Data sheet Tg = $114^{\circ}C$ (from TMA)
 - Oven cure 80°C for 5 minutes: $Tg = 67^{\circ}C$ (from TMA)

– It's an unstable glass.

Epoxy Stress Summary

- Both <u>thermal stress</u> between dissimilar materials, and <u>chemical shrinkage</u> <u>stress</u>, are reduced by lowering cure temperatures with VFM
 - Molecular rotation with microwave energy enhances chain rotations even after gelation which continues curing and adhesion processes
 - Lower modulus and lower crosslink density reduces stress with VFM
 - Lowered cure temperatures in standard ovens cannot be used because of inadequate cure and conversion to glasses
- Lower warpage in real FC and PoP device packages
- Silica filler loading can be reduced with low temperature VFM curing
- Elastomer additives can be eliminated with low temperature VFM curing
- 300 mm epoxy wafers have lower warpage and shrinkage stress with VFM post-mold cure

Acknowledgements:

- Kazuyuki Kohara, Masahiro Hasegawa, and Tony Ruscigno of Namics
 Corporation for providing the underfill materials for this study
- Tuck Foong Koh of Applied Materials for the epoxy wafers after molding and thinning
- Casey Check, the director of the University of Oregon CAMCOR Polymer Characterization Lab for valuable discussions on the DMA and modulated-TMA data