

Properties and Characteristics of HD4100 PSPI Cured at 250°C with Microwaves

Robert L. Hubbard

Lambda Technologies, Inc.

Melvin P. Zussman

HD MicroSystems, Inc.

Outline

- Background/Chemistry of PSPI curing
- Definitions of "cure" and chemical/thermal stability
- Mechanism of <u>Variable Frequency Microwave curing</u>
- Effects of cure variables on HD4100 film properties
- Optional processes to match film property needs

Chemistry of PSPI Curing

- <u>Imidization</u> reaction is a ring closure
 - Product is a very thermally and chemically stable thermoplastic

$$R_2$$
 R_3
 R_2
 R_3
 R_4
 R_4
 R_4
 R_5

- Photosensitive precursors crosslink on light exposure
 - Crosslinked intermediate is not soluble in developer ("negative acting")

$$R_{2}$$
 R_{3}
 R_{4}
 R_{4}
 R_{4}
 R_{5}
 R_{4}
 R_{4}
 R_{5}
 R_{4}
 R_{5}
 R_{4}
 R_{5}
 R_{5}
 R_{6}
 R_{1}
 R_{2}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{1}
 R_{2}
 R_{1}
 R_{2}
 R_{3}

Chemistry Continued...

- Photosensitive precursor releases residue with ring closure
 - Acrylate residue is thermally decomposed to CO₂ and other gasses

- Removal of residue increases Tg and film shrinkage in out-of-plane axis
- TWO parts of "cure":
 - <u>imidization</u>: necessary for chemical stability
 - <u>acrylate_removal</u>: necessary for high Tg and thermal stability

Microwaves are Low Heat Choice

Electromagnetic Spectrum

Gamma RaysX-RayUV	Nuclei Inner Electrons Covalent Bond Disruption	Ionizing Radiation
VisibleIR	Molecular Vibration	Non-Ionizing
Microwaves	Molecular Rotation	Radiation
RF	Charge Flow	

- Microwaves stimulate electrons in dipoles causing local rotation
 - No polarizability, no heating

Microwaves Cause Dipole Rotation

Water (H₂O)

Dipole Moment = 1.861Debye

Ammonia (NH₃)

Dipole Moment = 1.5 Debye

Dipoles in Polymer Resins

Most polymer resins are very responsive to microwaves

Different Heat Mechanism with Microwaves

Convection **shakes** progressively Microwave **spins** volumetrically

click each to animate

Variable Frequency Microwaves

- 4096 scanned frequencies in 0.1 second
- Each pulse only 25μs long

Very uniform heating No arcing with metals

IR Thermal Image: Wafer Processing

Wafer edge

Low Temperature Cure Experimental Designs

Variables:

Soak temperatures: 230°C, 250°C, 270°C

Time at soak: 1, 2, 3 hours

Ramp rate to soak: 0.2, 0.6, 1.0 °C/sec

Cooling ramp rate: 5 °C/min, 25°C/min

Atmosphere: 20, 5000, 20000 ppm O₂

Stress DOE:

- Sixteen wafers blanket coated with HD4100 to 5-6μm after cure
- Measure cured film shrinkage, stress, and wafer bow

Tensile DOE:

- Eleven wafers with PI2611 release layer and coupon patterned HD4100 (10 μ m)
- Measure modulus, break elongation, break strength, Tg, Td1%, Td5%, CTE
- Standard oven cures (reference)
 - Four wafers at 375°C and two wafers at 250°C

All wafers are 200mm diameter

"Soak Time" vs. "Cycle Time"

- "Cure time" is given as <u>soak</u> time, not cycle time
 - Standard industry-wide practice
- VFM only heats the sample, not the oven, fixtures, or the air

Standard oven cycle vs. example VFM cycles for HD4100

Chemical Stability from VFM Cure

- Full imidization at all conditions (230-270°C)
- FTIR data compares the emergence of the imide carbonyl to the reference of the un-changed phenyl ring

$$R_2$$
 R_1
 R_2
 R_3
 R_4
 R_4
 R_4
 R_4
 R_5
 R_6
 R_7
 R_8

Note: resolution of imidization is not quantitative above 95%

Thermal Properties Reflect Residue Removal

Imidization already complete; acrylate decomposition next

- Thermal decomposition removes the acrylates (low oxygen atmosphere)
 - Standard oven cure requires 375°C to thermally decompose acrylates*
 - VFM cure requires 350°C to thermally decompose acrylates*
 - VFM cure does not thermally decompose acrylate residues at 250°C
- Oxidation of the PI film requires > 300°C in air
 - VFM cure of PI in air at 250°C does not oxidize the film

Can VFM Oxidatively Decompose Residues?

- VFM cannot decompose polymers at most temperatures
 - Microwave energy level too low to break bonds directly
 - Oxidative decomposition is a chemical reaction *
 - Crosslinks and chain scission produce oxyradicals
 - CO2, alcohols, and other gasses are produced
- If VFM can oxidatively decompose the acrylate residues
 - Tg should increase, indicating greater thermal stability
 - Td1% and Td5% should increase, indicating lower residue levels
 - Weight loss temperature indicates first substantial outgassing
- No evidence of oxidation of polyimide film surface at 230-270°C

Thermal Stability

Tg variables: temperature, time, ramp, oxygen

• Td1% and Td5% variables: temperature, time, oxygen

Increased oxygen levels have increased acrylate residue removal

Other Tensile Properties

Elongation variable: Oxygen only

CTE variables: Temp/time interaction, ramp and oxygen

Modulus and Strength: no significant variables

Stress and Bow

Stress and shrinkage: oxygen is the biggest factor

Wafer bow variable: only ramp rate!

Cooling rate (ramp down): no effect on stress, shrinkage, or bow

Stress and Bow Variables are Different!

- Measured film stress and bow is primarily caused by:
 - shrinkage in the out-of-plane (z) axis due to elimination of water, solvent, and acrylate residue
 - CTE mis-match between the PI film (45-70 ppm/°C) and silicon (3 ppm/°C)
 - Oxygen (and temperature) increased shrinkage and stress as expected but had no effect on wafer bow
- Uniform heating from VFM, at temperatures much lower than Tg∞ (313°C), would predict lower wafer bow and stress.
- Wafer bow and stress were not lowered in these experiments
- Additional experiments are planned with additional profile modifications.

Properties: 375°C oven vs. 230-270°C VFM

DOE results:

Property Trade-offs

• Examples of actual data:

	Temp C	Time Hrs	Oxygen ppm	Tg C	Td1% C	Td5% C	Stress MPa	Bow mm	Elong. %
Standard	375C	5	<100	310	410	487	37.3	63	18.2
Standard *	350C	5	<100	256	382	432	28.3		
VFM *	350C	0.2	<20	330	463	497	31.6		
VFM	230	3	air	282	336	394	31.8	67	10.5
VFM	250	2	air	306	365	429			9.4
VFM	270	1	air	337	374	454	44.5	77	5.5
VFM	270	1	<20	236	336	392	30.6	62	25.9
VFM	270	3	<20	362	370	441	35.2	73.2	5.7

^{*} Zussman et.al., Symposium on Polymers, 2008

Optional Cure Profiles for HD4100

- Standard oven cure (375°C)
 - Full cure properties
 - Long <u>cycle</u> time (5 hours)
- Very fast VFM cure (340°C)
 - Full cure properties
 - Short <u>cycle</u> time (20 minutes)
 - Brief thermal exposure may have device advantages
- Low temperature VFM cure (230-270°C)
 - Full imidization chemically stable
 - Most of the acrylate residues are removed with oxygen (and temperature)
 - If wafers do not see subsequent temperatures above 300°C there is no outgassing in film (Td1% always > 300°C)
 - Oxidative decomposition lowers elongation
 - Wafer bow and stress are not reduced at 230-270°C